Lunes, Moons, & Balloons

Janica Edmonds
The University of Tulsa
September 3, 2015
Warm Up

- Circles
 - Circumference
 - Area

- Spheres
 - Surface area
 - Volume
Great Circles

A great circle is a circle on a spherical surface such that the plane containing the circle passes through the center of the sphere.

– Divides the sphere into two congruent hemispheres
Lunes

A lune is created when two great circles intersect.
Lunes

• A lune is created when two great circles intersect.
Spherical Area

- The area of a sphere of radius r is
Spherical Area

- The area of a sphere of radius r is $4\pi r^2$.
Spherical Area

• The area of a sphere of radius r is $4\pi r^2$.
 – Divide the sphere with a great circle.
 • Each congruent hemisphere has an area of
Spherical Area

- The area of a sphere of radius r is $4\pi r^2$.
 - Divide the sphere with a great circle.
 - Each congruent hemisphere has an area of $2\pi r^2$.
 - Divide the sphere with another great circle, which meets the first at right angles.
 - Each congruent lune has an area of...
Spherical Area

• The area of a sphere of radius r is $4\pi r^2$.
 – Divide the sphere with a great circle.
 • Each congruent hemisphere has an area of $2\pi r^2$.
 – Divide the sphere with another great circle, which meets the first at right angles.
 • Each congruent lune has an area of πr^2.
 – Divide each of the lunes into two by bisecting the angle.
 • Each congruent lune has an area of
Spherical Area

• The area of a sphere of radius \(r \) is \(4\pi r^2 \).
 – Divide the sphere with a great circle.
 • Each congruent hemisphere has an area of \(2\pi r^2 \).
 – Divide the sphere with another great circle, which meets the first at right angles.
 • Each congruent lune has an area of \(\pi r^2 \).
 – Divide each of the lunes into two by bisecting the angle.
 • Each congruent lune has an area of \(\frac{\pi r^2}{2} \).
Area of a Lune

• Let’s divide a hemisphere into q equal lunes.
 – What is the lunar angle of each lune?
 – What is the area of each lune?

 – Take the union of p of these lunes.
 • What is the lunar angle of the union?
 • What is the area of the union?

 – What is the relationship between the lunar angle and the area?
Spherical Triangles

- Assume the model is a sphere of radius 1 ft.
 - Choose a particular great circle (Equator) and mark off an arc AB of length $\frac{\pi}{2}$.
 - At each endpoint construct a perpendicular (geodesic) segment and extend the two segments until they meet.
 - Why must they meet? Where will they meet? Call this point C.
 - What is the sum of the angles of $\triangle ABC$?
 - Is $\triangle ABC$ equilateral?
Spherical Triangles

• Continuing with the model of the sphere ...
 – At point C, form an angle of $\frac{\pi}{3}$ rads (60°) with AC as one side.
 – Extend the other side until it meets AB. Call that point D.
 • What is the sum of the angles of $\triangle ADC$?
 • What is the distance from A to D?
 • What is the distance from C to D?
 – Let M be the midpoint of AB. Can you construct a triangle with base AM that is similar to $\triangle ABC$? Can you construct any other triangle that is similar but not congruent to $\triangle ABC$?
Questions

• Are there parallel great circles?
• Can you find a formula that relates the area of a spherical triangle to the sum of its angles?